Wednesday 7 June 2017

Modelo De Média Móvel Ponderado Exponencialmente


Explorando a média ponderada ponderada exponencial A volatilidade é a medida mais comum de risco, mas vem em vários sabores. Em um artigo anterior, mostramos como calcular a volatilidade histórica simples. (Para ler este artigo, consulte Usando a volatilidade para medir o risco futuro.) Usamos os dados reais do estoque do Google para computar a volatilidade diária com base em 30 dias de dados de estoque. Neste artigo, melhoraremos a volatilidade simples e discutiremos a média móvel exponencialmente ponderada (EWMA). Histórico vs. Volatilidade implícita Primeiro, vamos colocar esta métrica em um pouco de perspectiva. Há duas abordagens gerais: volatilidade histórica e implícita (ou implícita). A abordagem histórica pressupõe que o passado é um prólogo que medimos a história na esperança de que ela seja preditiva. A volatilidade implícita, por outro lado, ignora a história que resolve pela volatilidade implícita nos preços de mercado. Espera que o mercado conheça melhor e que o preço de mercado contenha, mesmo que implicitamente, uma estimativa consensual da volatilidade. Se focarmos apenas as três abordagens históricas (à esquerda acima), elas têm duas etapas em comum: Calcular a série de retornos periódicos Aplicar um esquema de ponderação Primeiro, nós Calcular o retorno periódico. Isso é tipicamente uma série de retornos diários onde cada retorno é expresso em termos continuamente compostos. Para cada dia, tomamos o log natural da razão dos preços das ações (ou seja, preço hoje dividido pelo preço de ontem, e assim por diante). Isso produz uma série de retornos diários, de u i para u i-m. Dependendo de quantos dias (m dias) estamos medindo. Isso nos leva ao segundo passo: é aqui que as três abordagens diferem. No artigo anterior (Usando a Volatilidade para Avaliar o Risco Futuro), mostramos que, sob algumas simplificações aceitáveis, a variância simples é a média dos retornos quadrados: Note que isto soma cada um dos retornos periódicos e depois divide esse total pela Número de dias ou observações (m). Então, é realmente apenas uma média dos retornos periódicos quadrados. Dito de outra forma, cada retorno ao quadrado é dado um peso igual. Portanto, se alfa (a) é um fator de ponderação (especificamente, um 1m), então uma variância simples é algo como isto: O EWMA Melhora na Variância Simples A fraqueza desta abordagem é que todos os retornos ganham o mesmo peso. O retorno de ontem (muito recente) não tem mais influência na variância do que nos últimos meses. Esse problema é corrigido usando-se a média móvel exponencialmente ponderada (EWMA), na qual retornos mais recentes têm maior peso na variância. A média móvel exponencialmente ponderada (EWMA) introduz lambda. Que é chamado de parâmetro de suavização. Lambda deve ser inferior a um. Sob essa condição, em vez de pesos iguais, cada retorno ao quadrado é ponderado por um multiplicador da seguinte forma: Por exemplo, RiskMetrics TM, uma empresa de gestão de risco financeiro, tende a usar um lambda de 0,94 ou 94. Neste caso, o primeiro Mais recente) é ponderado por (1-0.94) (. 94) 0 6. O próximo retomo ao quadrado é simplesmente um lambda-múltiplo do peso anterior neste caso 6 multiplicado por 94 5.64. E o terceiro dia anterior peso é igual a (1-0,94) (0,94) 2 5,30. Esse é o significado de exponencial em EWMA: cada peso é um multiplicador constante (isto é, lambda, que deve ser menor que um) do peso dos dias anteriores. Isso garante uma variância que é ponderada ou tendenciosa em direção a dados mais recentes. (Para saber mais, consulte a Planilha do Excel para a Volatilidade do Google.) A diferença entre simplesmente volatilidade e EWMA para o Google é mostrada abaixo. A volatilidade simples pesa efetivamente cada retorno periódico em 0.196, como mostrado na coluna O (tivemos dois anos de dados diários sobre os preços das ações, ou seja, 509 retornos diários e 1509 0.196). Mas observe que a Coluna P atribui um peso de 6, então 5.64, então 5.3 e assim por diante. Essa é a única diferença entre a variância simples e EWMA. Lembre-se: Depois de somarmos toda a série (na coluna Q) temos a variância, que é o quadrado do desvio padrão. Se queremos a volatilidade, precisamos nos lembrar de tomar a raiz quadrada dessa variância. Sua significativa: A variância simples nos deu uma volatilidade diária de 2,4, mas a EWMA deu uma volatilidade diária de apenas 1,4 (veja a planilha para detalhes). Aparentemente, volatilidade Googles estabeleceu-se mais recentemente, portanto, uma variância simples pode ser artificialmente elevada. A variação de hoje é uma função da variação dos dias de Pior Você observará que nós necessitamos computar uma série longa de pesos exponencial declinando. Nós não vamos fazer a matemática aqui, mas uma das melhores características do EWMA é que a série inteira convenientemente reduz a uma fórmula recursiva: Recursivo significa que as referências de variância de hoje (ou seja, é uma função da variação de dias anteriores). Você pode encontrar esta fórmula na planilha também, e produz o mesmo resultado exato que o cálculo de longhand Diz: A variância de hoje (sob EWMA) iguala a variância de ontem (ponderada por lambda) mais o retorno ao quadrado de ontem (pesado por um lambda negativo). Observe como estamos apenas adicionando dois termos juntos: ontem variância ponderada e ontem ponderado, retorno ao quadrado. Mesmo assim, lambda é o nosso parâmetro de suavização. Um lambda mais alto (por exemplo, como o RiskMetrics 94) indica um declínio mais lento na série - em termos relativos, vamos ter mais pontos de dados na série e eles vão cair mais lentamente. Por outro lado, se reduzimos o lambda, indicamos maior decaimento: os pesos caem mais rapidamente e, como resultado direto da rápida decomposição, são usados ​​menos pontos de dados. (Na planilha, lambda é uma entrada, para que você possa experimentar com sua sensibilidade). Resumo A volatilidade é o desvio padrão instantâneo de um estoque ea métrica de risco mais comum. É também a raiz quadrada da variância. Podemos medir a variância historicamente ou implicitamente (volatilidade implícita). Ao medir historicamente, o método mais fácil é a variância simples. Mas a fraqueza com variância simples é todos os retornos obter o mesmo peso. Então, enfrentamos um trade-off clássico: sempre queremos mais dados, mas quanto mais dados temos, mais nosso cálculo é diluído por dados distantes (menos relevantes). A média móvel exponencialmente ponderada (EWMA) melhora a variância simples atribuindo pesos aos retornos periódicos. Ao fazer isso, podemos usar um grande tamanho de amostra, mas também dar maior peso a retornos mais recentes. (Para ver um tutorial de filme sobre este tópico, visite o Bionic Turtle.) Uma oferta inicial sobre os ativos de uma empresa falida de um comprador interessado escolhido pela empresa falida. De um pool de licitantes. O Artigo 50 é uma cláusula de negociação e de liquidação no tratado da UE que delineia as medidas a serem tomadas para qualquer país que. Beta é uma medida da volatilidade, ou risco sistemático, de um título ou de uma carteira em comparação com o mercado como um todo. Um tipo de imposto incidente sobre ganhos de capital incorridos por pessoas físicas e jurídicas. Os ganhos de capital são os lucros que um investidor. Uma ordem para comprar um título igual ou inferior a um preço especificado. Uma ordem de limite de compra permite que traders e investidores especifiquem. Uma regra do Internal Revenue Service (IRS) que permite retiradas sem penalidade de uma conta IRA. A regra exige que. A abordagem EWMA tem uma característica atraente: requer relativamente pouco dados armazenados. Para atualizar nossa estimativa em qualquer ponto, precisamos apenas de uma estimativa prévia da taxa de variância e do valor de observação mais recente. Um objetivo secundário da EWMA é acompanhar mudanças na volatilidade. Para valores pequenos, observações recentes afetam prontamente a estimativa. Para valores próximos de um, a estimativa muda lentamente com base em mudanças recentes nos retornos da variável subjacente. O banco de dados RiskMetrics (produzido por JP Morgan e disponibilizado ao público) utiliza o EWMA para atualizar a volatilidade diária. IMPORTANTE: A fórmula EWMA não assume um nível de variância médio de longo prazo. Assim, o conceito de volatilidade significa reversão não é capturado pela EWMA. Os modelos ARCHGARCH são mais adequados para esta finalidade. Um objetivo secundário da EWMA é acompanhar mudanças na volatilidade, portanto, para valores pequenos, observação recente afeta prontamente a estimativa e para valores próximos de um, a estimativa muda lentamente para mudanças recentes nos retornos da variável subjacente. O banco de dados RiskMetrics (produzido pela JP Morgan) e disponibilizado ao público em 1994, utiliza o modelo EWMA para atualizar a estimativa diária de volatilidade. A empresa descobriu que, em toda uma gama de variáveis ​​de mercado, este valor fornece a previsão da variância que se aproxima da taxa de variação realizada. As taxas de desvio realizadas num determinado dia foram calculadas como uma média igualmente ponderada dos 25 dias subsequentes. Da mesma forma, para calcular o valor ótimo de lambda para o nosso conjunto de dados, precisamos calcular a volatilidade realizada em cada ponto. Existem vários métodos, então escolha um. Em seguida, calcule a soma de erros quadrados (SSE) entre EWMA estimativa e volatilidade realizada. Finalmente, minimizar o SSE variando o valor lambda. Parece simples É. O maior desafio é concordar com um algoritmo para calcular a volatilidade realizada. Por exemplo, o pessoal da RiskMetrics escolheu os 25 dias subseqüentes para calcular a taxa de variação realizada. No seu caso, você pode escolher um algoritmo que utiliza o Volume Diário, HILO e ou OPEN-CLOSE preços. Q 1: Podemos usar EWMA para estimar (ou prever) a volatilidade mais de um passo à frente A representação da volatilidade EWMA não assume uma volatilidade média de longo prazo e, portanto, para qualquer horizonte de previsão além de um passo, a EWMA retorna uma constante Valor: GARCH e EWMA 21 de maio de 2010 por David Harper, CFA, FRM, CIPM Objetivo: Comparar, contrastar e calcular abordagens paramétricas e não paramétricas para estimar a volatilidade condicional 8230 Incluindo: APROXIMAÇÃO GARCH Incluindo: LISO EXPONENCIAL (EWMA) Paramétrico) Os métodos modernos dão mais peso à informação recente. Ambos EWMA e GARCH colocar mais peso em informações recentes. Além disso, como EWMA é um caso especial de GARCH, tanto EWMA e GARCH empregar suavização exponencial. GARCH (p, q) e em particular GARCH (1, 1) GARCH (p, q) é um modelo heteroscedástico condutor geral autorregressivo. Aspectos chaves incluem: Autoregressive (AR). A variância de amanhã (ou volatilidade) é uma função regredida da variância de hoje (8282). Ela regride sobre si mesma Condicional (C). A variância de amanhã depende da variância mais recente. Uma variância incondicional não dependeria da variância Heteroskedastic de hoje (H). As variações não são constantes, elas fluem ao longo do tempo, GARCH regride em 8220lagged8221 ou termos históricos. Os termos defasados ​​são variância ou retornos quadrados. O modelo genérico GARCH (p, q) regressa em (p) retornos ao quadrado e (q) variâncias. Por conseguinte, GARCH (1, 1) 8220lags8221 ou regressa na última variância do período 8217s ao quadrado (isto é, apenas 1 retorno) e do último período 8217s (isto é, apenas 1 variância). GARCH (1, 1) dado pela seguinte equação. A mesma fórmula de GARCH (1, 1) pode ser dada com parâmetros gregos: Hull escreve a mesma equação de GARCH como: O primeiro termo (gVL) é importante porque VL é a variância média de longo prazo. Portanto, (gVL) é um produto: é a variância média ponderada de longo prazo. O modelo GARCH (1, 1) resolve a variância condicional como uma função de três variáveis ​​(variância anterior, retorno anterior2 e variância de longo prazo): Persistência é um recurso embutido no modelo GARCH. Dica: Nas fórmulas acima, a persistência é (b c) ou (alfa-1 beta). Persistência refere-se a quão rapidamente (ou lentamente) a variância reverte ou 8220decays8221 em direção a sua média de longo prazo. A alta persistência equivale a decadência lenta e regressão lenta 8220 para a média 8221 a baixa persistência equivale à rápida decomposição e rápida reversão à média.8221 A persistência de 1,0 não implica nenhuma reversão média. Uma persistência de menos de 1,0 implica uma reversão para a média, 8221 onde uma menor persistência implica maior reversão para a média. Dica: Como acima, a soma dos pesos atribuídos à variância defasada e ao retângulo quadrado é a persistência (persistência bc). Uma alta persistência (superior a zero, mas inferior a um) implica uma reversão lenta para a média. Porém, se os pesos atribuídos à variância retardada e retardo ao quadrado forem maiores do que um, o modelo é não-estacionário. Se (bc) for maior que 1 (se bc gt 1) o modelo é não-estacionário e, de acordo com Hull, instável. Neste caso, é preferida a EWMA. Linda Allen diz sobre GARCH (1, 1): GARCH é tanto 8220compact8221 (isto é, relativamente simples) e notavelmente preciso. Os modelos GARCH predominam na pesquisa acadêmica. Muitas variações do modelo GARCH foram tentadas, mas poucas têm melhorado no original. A desvantagem do modelo GARCH é sua não-linearidade sic Por exemplo: Resolva para a variância de longo prazo em GARCH (1,1) Considere a equação de GARCH (1, 1) abaixo: Assuma que: o parâmetro alfa 0.2, o parâmetro beta 0.7, E Observe que omega é 0,2, mas don8217t erro omega (0,2) para a variância de longo prazo Omega é o produto de gama ea variância de longo prazo. Portanto, se alfa beta 0,9, então gamma deve ser 0,1. Dado que o ômega é 0,2, sabemos que a variância de longo prazo deve ser 2,0 (0,2 184 0,1 2,0). GARCH (1,1): Mera diferença de notação entre Hull e Allen EWMA é um caso especial de GARCH (1,1) e GARCH (1,1) é um caso generalizado de EWMA. A diferença saliente é que GARCH inclui o termo adicional para reversão média e EWMA não tem uma reversão média. Aqui é como podemos obter de GARCH (1,1) para EWMA: Então deixamos um 0 e (bc) 1, de tal forma que a equação acima simplifica a: Isto é agora equivalente à fórmula para exponencialmente ponderada média móvel (EWMA): Em EWMA, o parâmetro lambda agora determina o 8220decay: 8221 um lambda que é próximo de um (lambda alto) exibe decadência lenta. O RiskMetricsTM Approach RiskMetrics é uma forma marcada da abordagem de média móvel exponencialmente ponderada (EWMA): O lambda ótimo (teórico) varia de acordo com a classe de ativos, mas o parâmetro ótimo global utilizado pelo RiskMetrics foi 0,94. Na prática, RiskMetrics usa apenas um fator de decadência para todas as séries: 183 0,94 para dados diários 183 0,97 para dados mensais (mês definido como 25 dias de negociação) Tecnicamente, os modelos diário e mensal são inconsistentes. No entanto, eles são fáceis de usar, eles aproximam o comportamento dos dados reais muito bem, e eles são robustos para misspecification. Nota: GARCH (1, 1), EWMA e RiskMetrics são paramétricos e recursivos. Resumo GARCH (1, 1) é um RiskMetrics generalizado e, inversamente, o RiskMetrics é GARCH (1, 1) é dado por: Os três parâmetros são pesos e, portanto, devem somar a um: Dica: Tenha cuidado com o primeiro termo no GARCH (1,1) onde a 0 e (bc) Equação de GARCH (1, 1): ômega () gama () (variância média de longo prazo). Se você for solicitado para a variância, talvez seja necessário dividir o peso para calcular a variância média. Determine quando e se um modelo GARCH ou EWMA deve ser usado na estimativa da volatilidade Na prática, as taxas de variância tendem a ser a média reverter, portanto, o modelo GARCH (1, 1) é teoricamente superior (8220 mais atraente do que o modelo EWMA). Lembre-se, é a grande diferença: GARCH adiciona o parâmetro que pondera a média de longo prazo e, portanto, incorpora reversão média. Dica: GARCH (1, 1) é preferido a menos que o primeiro parâmetro seja negativo (o que está implícito se alfa beta gt 1). Neste caso, GARCH (1,1) é instável e EWMA é preferido. Explique como as estimativas GARCH podem fornecer previsões mais precisas. A média móvel calcula a variância com base numa janela de observação, por ex. Nos dez dias anteriores, nos 100 dias anteriores. Existem dois problemas com a média móvel (MA): Característica fantasma: choques de volatilidade (aumentos repentinos) são abruptamente incorporados na métrica MA e, em seguida, quando a janela de arrasto passa, eles são abruptamente descartados do cálculo. Devido a isto a métrica de MA mudará em relação ao comprimento de janela escolhido As informações de tendência não são incorporadas As estimativas de GARCH melhoram estas fraquezas de duas maneiras: As observações mais recentes são atribuídas pesos maiores. Isso supera fantasmas porque um choque de volatilidade impactará imediatamente a estimativa, mas sua influência irá desaparecer gradualmente à medida que o tempo passa. Um termo é adicionado para incorporar a reversão à média. Explicar como a persistência está relacionada à reversão à média. Dada a equação de GARCH (1, 1): A persistência é dada por: GARCH (1, 1) é instável se a persistência gt 1. A persistência de 1,0 não indica reversão média. Uma baixa persistência (por exemplo, 0,6) indica desintegração rápida e alta reversão para a média. Dica: GARCH (1, 1) tem três pesos atribuídos a três fatores. Persistência é a soma dos pesos atribuídos tanto à variância retardada quanto ao retardo ao quadrado. O outro peso é atribuído à variância de longo prazo. Portanto, se P (persistência) é alta, então G (reversão de média) é baixa: a série persistente não é fortemente reverting de média que exibe 8220slow decay8221 para o significar. Se P é baixo, então G deve ser alto: a série impersistente significa fortemente reverter, exibe 8220 desvanecimento acelerado 8221 em relação à média. A média, incondicional variação no modelo GARCH (1, 1) é dada por: Explique como EWMA sistematicamente descontos mais antigos dados, e identificar o RiskMetrics174 diária e mensal decadência fatores. A média móvel ponderada exponencialmente (EWMA) é dada por: A fórmula acima é uma simplificação recursiva da série 8220true8221 EWMA que é dada por: Na série EWMA, cada peso atribuído ao quadrado retorna é uma proporção constante do peso precedente. Especificamente, lambda (l) é a razão entre pesos vizinhos. Desta forma, os dados mais antigos são sistematicamente descontados. O desconto sistemático pode ser gradual (lento) ou abrupto, dependendo de lambda. Se lambda é elevado (por exemplo, 0,99), então o desconto é muito gradual. Se lambda for baixa (por exemplo 0,7), o desconto é mais abrupto. Os fatores de deterioração do RiskMetrics TM: 0,94 para dados diários 0,97 para dados mensais (mês definido como 25 dias de negociação) Explique por que as correlações de previsão podem ser mais importantes do que as volatilidades de previsão. Ao mensurar o risco de carteira, as correlações podem ser mais importantes do que a variabilidade individual de volatilidade do instrumento. Portanto, no que diz respeito ao risco de carteira, uma previsão de correlação pode ser mais importante do que as previsões individuais de volatilidade. Use GARCH (1, 1) para prever a volatilidade A taxa de variância futura esperada, em (t) períodos, é dada por: Por exemplo, suponha que uma estimativa de volatilidade atual (período n) é dada pelo seguinte GARCH (1, 1 ): Neste exemplo, alfa é o peso (0,1) atribuído ao retorno quadrado anterior (o retorno anterior era 4), beta é o peso (0,7) atribuído à variância anterior (0,0016). Qual é a volatilidade futura esperada, em dez dias (n 10) Primeiro, resolva a variância de longo prazo. Não é 0,00008 este termo é o produto da variância e seu peso. Como o peso deve ser 0,2 (1 - 0,1 -0,7), a variância de longo prazo 0,0004. Em segundo lugar, precisamos da variância atual (período n). Isso é quase dado acima: Agora podemos aplicar a fórmula para resolver a taxa de variância esperada futuro: Esta é a taxa de variância esperada, de modo que a volatilidade esperada é de aproximadamente 2,24. Observe como isso funciona: a volatilidade atual é de cerca de 3,69 ea volatilidade de longo prazo é 2. A projeção de 10 dias para a frente 8220fades8221 a taxa atual mais próxima da taxa de longo prazo. Previsão de volatilidade não paramétrica Modelos de média móvel e de suavização exponencial Como um primeiro passo para se ultrapassar os modelos de média, os modelos de caminhada aleatória e os modelos de tendência linear, padrões e tendências não sazonais podem ser extrapolados usando um modelo de média móvel ou suavização. A suposição básica por trás dos modelos de média e suavização é que a série temporal é estacionária localmente com uma média lentamente variável. Assim, tomamos uma média móvel (local) para estimar o valor atual da média e, em seguida, usá-lo como a previsão para o futuro próximo. Isto pode ser considerado como um compromisso entre o modelo médio eo modelo randômico-sem-deriva. A mesma estratégia pode ser usada para estimar e extrapolar uma tendência local. Uma média móvel é chamada frequentemente uma versão quotsmoothedquot da série original porque a média de curto prazo tem o efeito de alisar para fora os solavancos na série original. Ajustando o grau de suavização (a largura da média móvel), podemos esperar encontrar algum tipo de equilíbrio ótimo entre o desempenho dos modelos de caminhada média e aleatória. O tipo mais simples de modelo de média é o. Média Móvel Simples (igualmente ponderada): A previsão para o valor de Y no tempo t1 que é feita no tempo t é igual à média simples das observações m mais recentes: (Aqui e em outro lugar usarei o símbolo 8220Y-hat8221 para ficar Para uma previsão da série de tempo Y feita o mais cedo possível antes de um determinado modelo). Esta média é centrada no período t (m1) 2, o que implica que a estimativa da média local tende a ficar aquém do verdadeiro Valor da média local em cerca de (m1) 2 períodos. Dessa forma, dizemos que a idade média dos dados na média móvel simples é (m1) 2 em relação ao período para o qual a previsão é calculada: é a quantidade de tempo que as previsões tendem a ficar atrás de pontos de viragem nos dados . Por exemplo, se você estiver calculando a média dos últimos 5 valores, as previsões serão cerca de 3 períodos atrasados ​​em responder a pontos de viragem. Observe que se m1, o modelo de média móvel simples (SMA) é equivalente ao modelo de caminhada aleatória (sem crescimento). Se m é muito grande (comparável ao comprimento do período de estimação), o modelo SMA é equivalente ao modelo médio. Como com qualquer parâmetro de um modelo de previsão, é costume ajustar o valor de k para obter o melhor quotfitquot aos dados, isto é, os erros de previsão mais baixos em média. Aqui está um exemplo de uma série que parece apresentar flutuações aleatórias em torno de uma média de variação lenta. Primeiro, vamos tentar encaixá-lo com um modelo de caminhada aleatória, o que equivale a uma média móvel simples de 1 termo: O modelo de caminhada aleatória responde muito rapidamente às mudanças na série, mas ao fazê-lo escolhe grande parte do quotnoisequot na Dados (as flutuações aleatórias), bem como o quotsignalquot (a média local). Se preferirmos tentar uma média móvel simples de 5 termos, obtemos um conjunto de previsões mais suaves: a média móvel simples de 5 períodos produz erros significativamente menores do que o modelo de caminhada aleatória neste caso. A idade média dos dados nessa previsão é 3 ((51) 2), de modo que ela tende a ficar atrás de pontos de viragem em cerca de três períodos. (Por exemplo, uma desaceleração parece ter ocorrido no período 21, mas as previsões não virar até vários períodos mais tarde.) Observe que as previsões de longo prazo do modelo SMA são uma linha reta horizontal, assim como na caminhada aleatória modelo. Assim, o modelo SMA assume que não há tendência nos dados. No entanto, enquanto as previsões a partir do modelo de caminhada aleatória são simplesmente iguais ao último valor observado, as previsões do modelo SMA são iguais a uma média ponderada de valores recentes. Os limites de confiança calculados pela Statgraphics para as previsões de longo prazo da média móvel simples não se alargam à medida que o horizonte de previsão aumenta. Isto obviamente não é correto Infelizmente, não há uma teoria estatística subjacente que nos diga como os intervalos de confiança devem se ampliar para este modelo. No entanto, não é muito difícil calcular estimativas empíricas dos limites de confiança para as previsões de longo prazo. Por exemplo, você poderia configurar uma planilha na qual o modelo SMA seria usado para prever 2 passos à frente, 3 passos à frente, etc. dentro da amostra de dados históricos. Você poderia então calcular os desvios padrão da amostra dos erros em cada horizonte de previsão e então construir intervalos de confiança para previsões de longo prazo adicionando e subtraindo múltiplos do desvio padrão apropriado. Se tentarmos uma média móvel simples de 9 termos, obteremos previsões ainda mais suaves e mais de um efeito retardado: A idade média é agora de 5 períodos ((91) 2). Se tomarmos uma média móvel de 19 períodos, a idade média aumenta para 10: Observe que, de fato, as previsões estão ficando atrás de pontos de inflexão por cerca de 10 períodos. A quantidade de suavização é melhor para esta série Aqui está uma tabela que compara suas estatísticas de erro, incluindo também uma média de 3-termo: Modelo C, a média móvel de 5-termo, rende o menor valor de RMSE por uma pequena margem sobre o 3 E médias de 9-termo, e suas outras estatísticas são quase idênticas. Assim, entre modelos com estatísticas de erro muito semelhantes, podemos escolher se preferiríamos um pouco mais de resposta ou um pouco mais de suavidade nas previsões. O modelo de média móvel simples descrito acima tem a propriedade indesejável de tratar as últimas k observações de forma igual e ignora completamente todas as observações anteriores. (Voltar ao início da página.) Browns Simple Exponential Smoothing (média ponderada exponencialmente ponderada) Intuitivamente, os dados passados ​​devem ser descontados de forma mais gradual - por exemplo, a observação mais recente deve ter um pouco mais de peso que a segunda mais recente, ea segunda mais recente deve ter um pouco mais de peso do que a 3ª mais recente, e em breve. O modelo de suavização exponencial simples (SES) realiza isso. Vamos 945 denotar uma constante quotsmoothingquot (um número entre 0 e 1). Uma maneira de escrever o modelo é definir uma série L que represente o nível atual (isto é, o valor médio local) da série, conforme estimado a partir dos dados até o presente. O valor de L no tempo t é calculado recursivamente a partir de seu próprio valor anterior como este: Assim, o valor suavizado atual é uma interpolação entre o valor suavizado anterior e a observação atual, onde 945 controla a proximidade do valor interpolado para o mais recente observação. A previsão para o próximo período é simplesmente o valor suavizado atual: Equivalentemente, podemos expressar a próxima previsão diretamente em termos de previsões anteriores e observações anteriores, em qualquer uma das seguintes versões equivalentes. Na primeira versão, a previsão é uma interpolação entre previsão anterior e observação anterior: Na segunda versão, a próxima previsão é obtida ajustando a previsão anterior na direção do erro anterior por uma fração 945. é o erro feito em Tempo t. Na terceira versão, a previsão é uma média móvel exponencialmente ponderada (ou seja, descontada) com o fator de desconto 1- 945: A versão de interpolação da fórmula de previsão é a mais simples de usar se você estiver implementando o modelo em uma planilha: Célula única e contém referências de células que apontam para a previsão anterior, a observação anterior ea célula onde o valor de 945 é armazenado. Observe que se 945 1, o modelo SES é equivalente a um modelo de caminhada aleatória (sem crescimento). Se 945 0, o modelo SES é equivalente ao modelo médio, assumindo que o primeiro valor suavizado é definido igual à média. A idade média dos dados na previsão de suavização exponencial simples é de 1 945 em relação ao período para o qual a previsão é calculada. (Isso não é suposto ser óbvio, mas pode ser facilmente demonstrado pela avaliação de uma série infinita.) Portanto, a previsão média móvel simples tende a ficar para trás de pontos de viragem em cerca de 1 945 períodos. Por exemplo, quando 945 0,5 o atraso é 2 períodos quando 945 0,2 o atraso é de 5 períodos quando 945 0,1 o atraso é de 10 períodos, e assim por diante. Para uma determinada idade média (isto é, a quantidade de atraso), a previsão de suavização exponencial simples (SES) é um pouco superior à previsão de média móvel simples (SMA) porque coloca relativamente mais peso na observação mais recente - i. e. É ligeiramente mais quotresponsivequot às mudanças que ocorrem no passado recente. Por exemplo, um modelo SMA com 9 termos e um modelo SES com 945 0,2 têm uma idade média de 5 para os dados nas suas previsões, mas o modelo SES coloca mais peso nos últimos 3 valores do que o modelo SMA e no modelo SMA. Uma outra vantagem importante do modelo SES sobre o modelo SMA é que o modelo SES usa um parâmetro de suavização que é continuamente variável, de modo que pode ser otimizado com facilidade Usando um algoritmo quotsolverquot para minimizar o erro quadrático médio. O valor óptimo de 945 no modelo SES para esta série revela-se 0.2961, como mostrado aqui: A idade média dos dados nesta previsão é 10.2961 3.4 períodos, que é semelhante ao de uma média móvel simples de 6-termo. As previsões a longo prazo do modelo SES são uma linha reta horizontal. Como no modelo SMA e no modelo randômico sem crescimento. No entanto, note que os intervalos de confiança calculados por Statgraphics agora divergem de uma forma razoável, e que eles são substancialmente mais estreitos do que os intervalos de confiança para o modelo de caminhada aleatória. O modelo SES assume que a série é um tanto quotmore previsível do que o modelo de caminhada aleatória. Um modelo SES é realmente um caso especial de um modelo ARIMA. Portanto a teoria estatística dos modelos ARIMA fornece uma base sólida para o cálculo de intervalos de confiança para o modelo SES. Em particular, um modelo SES é um modelo ARIMA com uma diferença não sazonal, um termo MA (1) e nenhum termo constante. Também conhecido como um modelo quotARIMA (0,1,1) sem constantequot. O coeficiente MA (1) no modelo ARIMA corresponde à quantidade 1-945 no modelo SES. Por exemplo, se você ajustar um modelo ARIMA (0,1,1) sem constante para a série aqui analisada, o coeficiente MA estimado (1) resulta ser 0,7029, que é quase exatamente um menos 0,2961. É possível adicionar a hipótese de uma tendência linear constante não-zero para um modelo SES. Para fazer isso, basta especificar um modelo ARIMA com uma diferença não sazonal e um termo MA (1) com uma constante, ou seja, um modelo ARIMA (0,1,1) com constante. As previsões a longo prazo terão então uma tendência que é igual à tendência média observada durante todo o período de estimação. Você não pode fazer isso em conjunto com o ajuste sazonal, porque as opções de ajuste sazonal são desativadas quando o tipo de modelo é definido como ARIMA. No entanto, você pode adicionar uma tendência exponencial de longo prazo constante a um modelo de suavização exponencial simples (com ou sem ajuste sazonal) usando a opção de ajuste de inflação no procedimento de Previsão. A taxa adequada de inflação (crescimento percentual) por período pode ser estimada como o coeficiente de declive num modelo de tendência linear ajustado aos dados em conjunto com uma transformação de logaritmo natural, ou pode basear-se em outra informação independente sobre as perspectivas de crescimento a longo prazo . (Voltar ao início da página.) Browns Linear (ie duplo) Suavização exponencial Os modelos SMA e SES assumem que não há tendência de qualquer tipo nos dados (o que normalmente é OK ou pelo menos não muito ruim para 1- Antecipadamente quando os dados são relativamente ruidosos), e podem ser modificados para incorporar uma tendência linear constante como mostrado acima. O que acontece com as tendências de curto prazo Se uma série exibir uma taxa de crescimento variável ou um padrão cíclico que se destaque claramente contra o ruído, e se houver uma necessidade de prever mais do que um período à frente, a estimativa de uma tendência local também pode ser um problema. O modelo de suavização exponencial simples pode ser generalizado para obter um modelo linear de suavização exponencial (LES) que calcula as estimativas locais de nível e tendência. O modelo de tendência de variação de tempo mais simples é o modelo de alisamento exponencial linear de Browns, que usa duas séries suavizadas diferentes que são centradas em diferentes pontos do tempo. A fórmula de previsão é baseada em uma extrapolação de uma linha através dos dois centros. (Uma versão mais sofisticada deste modelo, Holt8217s, é discutida abaixo.) A forma algébrica do modelo de suavização exponencial linear de Brown8217s, como a do modelo de suavização exponencial simples, pode ser expressa em um número de formas diferentes mas equivalentes. A forma quotstandard deste modelo é usualmente expressa da seguinte maneira: Seja S a série de suavização simples obtida aplicando-se a suavização exponencial simples à série Y. Ou seja, o valor de S no período t é dado por: (Lembre-se que, Exponencial, esta seria a previsão para Y no período t1.) Então deixe Squot denotar a série duplamente-alisada obtida aplicando a suavização exponencial simples (usando o mesmo 945) à série S: Finalmente, a previsão para Y tk. Para qualquer kgt1, é dado por: Isto resulta em e 1 0 (isto é, enganar um pouco, e deixar a primeira previsão igual à primeira observação real) e e 2 Y 2 8211 Y 1. Após o que as previsões são geradas usando a equação acima. Isto produz os mesmos valores ajustados que a fórmula baseada em S e S se estes últimos foram iniciados utilizando S 1 S 1 Y 1. Esta versão do modelo é usada na próxima página que ilustra uma combinação de suavização exponencial com ajuste sazonal. Holt8217s Linear Exponential Smoothing Brown8217s O modelo LES calcula as estimativas locais de nível e tendência alisando os dados recentes, mas o fato de que ele faz isso com um único parâmetro de suavização coloca uma restrição nos padrões de dados que é capaz de ajustar: o nível ea tendência Não podem variar em taxas independentes. Holt8217s modelo LES aborda esta questão, incluindo duas constantes de alisamento, um para o nível e um para a tendência. Em qualquer momento t, como no modelo Brown8217s, existe uma estimativa L t do nível local e uma estimativa T t da tendência local. Aqui eles são calculados recursivamente a partir do valor de Y observado no tempo t e as estimativas anteriores do nível e tendência por duas equações que aplicam alisamento exponencial para eles separadamente. Se o nível estimado ea tendência no tempo t-1 são L t82091 e T t-1. Respectivamente, então a previsão para Y tshy que teria sido feita no tempo t-1 é igual a L t-1 T t-1. Quando o valor real é observado, a estimativa atualizada do nível é calculada recursivamente pela interpolação entre Y tshy e sua previsão, L t-1 T t-1, usando pesos de 945 e 1-945. A mudança no nível estimado, Nomeadamente L t 8209 L t82091. Pode ser interpretado como uma medida ruidosa da tendência no tempo t. A estimativa actualizada da tendência é então calculada recursivamente pela interpolação entre L t 8209 L t82091 e a estimativa anterior da tendência, T t-1. Usando pesos de 946 e 1-946: A interpretação da constante de suavização de tendência 946 é análoga à da constante de suavização de nível 945. Modelos com valores pequenos de 946 assumem que a tendência muda apenas muito lentamente ao longo do tempo, enquanto modelos com Maior 946 supor que está mudando mais rapidamente. Um modelo com um 946 grande acredita que o futuro distante é muito incerto, porque os erros na tendência-estimativa tornam-se completamente importantes ao prever mais de um período adiante. As constantes de suavização 945 e 946 podem ser estimadas da maneira usual minimizando o erro quadrático médio das previsões de 1 passo à frente. Quando isso é feito em Statgraphics, as estimativas se tornam 945 0,3048 e 946 0,008. O valor muito pequeno de 946 significa que o modelo assume muito pouca mudança na tendência de um período para o outro, então basicamente este modelo está tentando estimar uma tendência de longo prazo. Por analogia com a noção de idade média dos dados que é utilizada na estimativa do nível local da série, a idade média dos dados que são utilizados na estimativa da tendência local é proporcional a 1 946, embora não exatamente igual a . Neste caso, isto é 10.006 125. Isto não é um número muito preciso, na medida em que a precisão da estimativa de 946 é realmente de 3 casas decimais, mas é da mesma ordem geral de magnitude que o tamanho da amostra de 100, portanto Este modelo está calculando a média sobre bastante muita história em estimar a tendência. O gráfico de previsão abaixo mostra que o modelo LES estima uma tendência local ligeiramente maior no final da série do que a tendência constante estimada no modelo SEStrend. Além disso, o valor estimado de 945 é quase idêntico ao obtido pela montagem do modelo SES com ou sem tendência, de modo que este é quase o mesmo modelo. Agora, eles parecem previsões razoáveis ​​para um modelo que é suposto ser estimar uma tendência local Se você 8220eyeball8221 esse enredo, parece que a tendência local virou para baixo no final da série O que aconteceu Os parâmetros deste modelo Foram calculados minimizando o erro quadrático das previsões de um passo à frente, e não as previsões a mais longo prazo, caso em que a tendência não faz muita diferença. Se tudo o que você está olhando são 1-passo-frente erros, você não está vendo a imagem maior de tendências sobre (digamos) 10 ou 20 períodos. A fim de obter este modelo mais em sintonia com a nossa extrapolação do globo ocular dos dados, podemos ajustar manualmente a tendência de alisamento constante para que ele usa uma linha de base mais curto para a estimativa de tendência. Por exemplo, se escolhemos definir 946 0,1, então a idade média dos dados usados ​​na estimativa da tendência local é de 10 períodos, o que significa que estamos fazendo a média da tendência ao longo dos últimos 20 períodos. Here8217s o que o lote de previsão parece se definimos 946 0,1, mantendo 945 0,3. Isso parece intuitivamente razoável para esta série, embora seja provavelmente perigoso para extrapolar esta tendência mais de 10 períodos no futuro. E sobre as estatísticas de erro Aqui está uma comparação de modelos para os dois modelos mostrados acima, bem como três modelos SES. O valor ótimo de 945 para o modelo SES é de aproximadamente 0,3, mas resultados semelhantes (com ligeiramente mais ou menos responsividade, respectivamente) são obtidos com 0,5 e 0,2. (A) Holts linear exp. Alisamento com alfa 0,3048 e beta 0,008 (B) Holts linear exp. Alisamento com alfa 0,3 e beta 0,1 (C) Suavização exponencial simples com alfa 0,5 (D) Suavização exponencial simples com alfa 0,3 (E) Suavização exponencial simples com alfa 0,2 Suas estatísticas são quase idênticas, portanto, realmente não podemos fazer a escolha com base De erros de previsão de 1 passo à frente dentro da amostra de dados. Temos de recorrer a outras considerações. Se acreditarmos firmemente que faz sentido basear a estimativa da tendência atual sobre o que aconteceu nos últimos 20 períodos, podemos fazer um caso para o modelo LES com 945 0,3 e 946 0,1. Se queremos ser agnósticos quanto à existência de uma tendência local, então um dos modelos do SES pode ser mais fácil de explicar e também dar mais previsões de médio-caminho para os próximos 5 ou 10 períodos. Evidências empíricas sugerem que, se os dados já tiverem sido ajustados (se necessário) para a inflação, então pode ser imprudente extrapolar os resultados lineares de curto prazo Muito para o futuro. As tendências evidentes hoje podem afrouxar no futuro devido às causas variadas tais como a obsolescência do produto, a competição aumentada, e os abrandamentos cíclicos ou as ascensões em uma indústria. Por esta razão, a suavização exponencial simples geralmente desempenha melhor fora da amostra do que poderia ser esperado, apesar de sua extrapolação de tendência horizontal quotnaivequot. Modificações de tendência amortecida do modelo de suavização exponencial linear também são freqüentemente usadas na prática para introduzir uma nota de conservadorismo em suas projeções de tendência. O modelo LES com tendência a amortecimento pode ser implementado como um caso especial de um modelo ARIMA, em particular, um modelo ARIMA (1,1,2). É possível calcular intervalos de confiança em torno de previsões de longo prazo produzidas por modelos exponenciais de suavização, considerando-os como casos especiais de modelos ARIMA. A largura dos intervalos de confiança depende de (i) o erro RMS do modelo, (ii) o tipo de suavização (simples ou linear) (iii) o valor (S) da (s) constante (s) de suavização e (iv) o número de períodos à frente que você está prevendo. Em geral, os intervalos se espalham mais rapidamente à medida que o 945 fica maior no modelo SES e eles se espalham muito mais rápido quando se usa linear ao invés de alisamento simples. Este tópico é discutido mais adiante na seção de modelos ARIMA das notas. (Voltar ao topo da página.)

No comments:

Post a Comment